Slk19p is necessary to prevent separation of sister chromatids in meiosis I

نویسندگان

  • Rebecca J Kamieniecki
  • Robert M.Q Shanks
  • Dean S Dawson
چکیده

BACKGROUND A fundamental difference between meiotic and mitotic chromosome segregation is that in meiosis I, sister chromatids remain joined, moving as a unit to one pole of the spindle rather than separating as they do in mitosis. It has long been known that the sustained linkage of sister chromatids through meiotic anaphase I is accomplished by association of the chromatids at the centromere region. The localization of the cohesin Rec8p to the centromeres is essential for maintenance of sister chromatid cohesion through meiosis I, but the molecular basis for the regulation of Rec8p and sister kinetochores in meiosis remains a mystery. RESULTS We show that the SLK19 gene product from Saccharomyces cerevisiae is essential for proper chromosome segregation during meiosis I. When slk19 mutants were induced to sporulate they completed events characteristic of meiotic prophase I, but at the first meiotic division they segregated their sister chromatids to opposite poles at high frequencies. The vast majority of these cells did not perform a second meiotic division and proceeded to form dyads (asci containing two spores). Slk19p was found to localize to centromere regions of chromosomes during meiotic prophase where it remained until anaphase I. In the absence of Slk19p, Rec8p was not maintained at the centromere region through anaphase I as it is in wild-type cells. Finally, we demonstrate that Slk19p appears to function downstream of the meiosis-specific protein Spo13p in control of sister chromatid behavior during meiosis I. CONCLUSIONS Our results suggest that Slk19p is essential at the centromere of meiotic chromosomes to prevent the premature separation of sister chromatids at meiosis I.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Saccharomyces cerevisiae centromere protein Slk19p is required for two successive divisions during meiosis.

Meiotic cell division includes two separate and distinct types of chromosome segregation. In the first segregational event the sister chromatids remain attached at the centromere; in the second the chromatids are separated. The factors that control the order of chromosome segregation during meiosis have not yet been identified but are thought to be confined to the centromere region. We showed t...

متن کامل

Sister-chromatid misbehavior in Drosophila ord mutants.

In Drosophila males and females mutant for the ord gene, sister chromatids prematurely disjoin in meiosis. We have isolated five new alleles of ord and analyzed them both as homozygotes and in trans to deficiencies for the locus, and we show that ord function is necessary early in meiosis of both sexes. Strong ord alleles result in chromosome nondisjunction in meiosis I that appears to be the c...

متن کامل

Shugoshin1 May Play Important Roles in Separation of Homologous Chromosomes and Sister Chromatids during Mouse Oocyte Meiosis

BACKGROUND Homologous chromosomes separate in meiosis I and sister chromatids separate in meiosis II, generating haploid gametes. To address the question why sister chromatids do not separate in meiosis I, we explored the roles of Shogoshin1 (Sgo1) in chromosome separation during oocyte meiosis. METHODOLOGY/PRINCIPAL FINDINGS Sgo1 function was evaluated by exogenous overexpression to enhance ...

متن کامل

The Aurora B Kinase AIR-2 Regulates Kinetochores during Mitosis and Is Required for Separation of Homologous Chromosomes during Meiosis

BACKGROUND Mitotic chromosome segregation depends on bi-orientation and capture of sister kinetochores by microtubules emanating from opposite spindle poles and the near synchronous loss of sister chromatid cohesion. During meiosis I, in contrast, sister kinetochores orient to the same pole, and homologous kinetochores are captured by microtubules emanating from opposite spindle poles. Addition...

متن کامل

Spo13 protects meiotic cohesin at centromeres in meiosis I.

In the absence of Spo13, budding yeast cells complete a single meiotic division during which sister chromatids often separate. We investigated the function of Spo13 by following chromosomes tagged with green fluorescent protein. The occurrence of a single division in spo13Delta homozygous diploids depends on the spindle checkpoint. Eliminating the checkpoint accelerates meiosis I in spo13Delta ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2000